Interactive audio plug-in
development using the Wwise SDK

. .xxx. .

Joel Robichaud
ADC 2018

Let’s start with some terminology

“Interactive multimedia, any computer-delivered electronic system that allows the
user to control, combine, and manipulate different types of media, such as text,
sound, video, computer graphics, and animation.

[...]

Interactive multimedia shift the user’s role from observer to participant and are
considered the next generation of electronic information systems.”

— Encyclopaedia Britannica

How Wwise fits in the picture

e Wwise is an interactive audio solution with a focus towards video games
e |t supports audio plug-ins, but not quite in the same way that DAWSs typically do

Anatomy of a Wwise plug-in

e Consists of two parts (and some config files) MyPlugin/

, . . —— MyPluginConfig.h
e One part is executed in the Sound Engine | PrenakePluginoius

to produce or modify the input sound based — SoundEnginePlugin
. . . . —— MyPluginFX.cpp
on settings defined by the user in Wwise [MyPluginFX.h

—— MyPluginFXFactory.h

e Another part runs in Wwise and contains | MyPLuginFXParams.cpp
the Ul that the user can use to modify the — MyPluginFXParams.h
. . —— MyPluginFXShared.cpp
plug-in's properties — WwisePlugin

—— MyPlugin.cpp

—— MyPlugin.def

—— MyPlugin.h

—— MyPlugin.xml

—— MyPluginPlugin.cpp
—— MyPluginPlugin.h
— bundle_template.json

Authoring plug-ins

e Once built, they consist of an XML descriptor file and a DLL file built for Windows

e They statically link with the Sound Engine plug-in to be able to provide real-time
editing capabilities

e Common editing operations such as persistence and undo / redo support are
automatically handled

Authoring plug-ins (cont.)

// MyPlugin.xml
<PluginModule>
<EffectPlugin Name="MyPlugin" CompanyID="64" PluginID="0">
<Properties>
<Property Name="Dummy" Type="Real32" SupportRTPCType="Exclusive" DisplayName="Dummy">
<UserInterface Step="0.1" Fine="0.001" Decimals="3" UIMax="10" />
<DefaultValue>0.0</DefaultValue>
<AudioEnginePropertyID>0</AudioEnginePropertyID>
<Restrictions>
<ValueRestriction>
<Range Type="Real32">
<Min>0.001</Min>
<Max>1000</Max>
</Range>
</ValueRestriction>
</Restrictions>
</Property>
</Properties>
</EffectPlugin>
</PluginModule>

Authoring plug-ins (cont.)

// MyPluginPlugin.cpp
class MyPluginPlugin
: public AK::Wwise::DefaultAudioPluginImplementation
{
public:
void Destroy() override;
void SetPluginPropertySet (...) override;
bool GetBankParameters (...) const override;

private:

AK::Wwise:: IPluginPropertySetx propertySet;
¥3

Authoring plug-ins (cont.)

// MyPlugin.cpp

#include " ../MyPluginFXFactory.h"
DEFINEDUMMYASSERTHOOK;
DEFINE_PLUGIN REGISTER_HOOK;

BOOL WINAPI Dl1Main (HINSTANCE nativeHandle, DWORD reason, LPVOID reserved)

{ if (reason = DLL_PROCESS_ATTACH)
AK ::Wwise :: RegisterWwisePlugin();
return TRUE;
iK::Wwise::IPluginBase* __stdcall AkCreatePlugin (...)
{ return new VoluminousPlugin();
}

// MyPlugin.def

LIBRARY "MyPlugin"

EXPORTS
AkCreatePlugin

Sound Engine plug-ins

e Once built, they consist of a static and (optionally) a shared library
e There are different kinds of Sound Engine plug-ins you can create, depending
on what you want them to do (effect, source, sink or mixer)

| AK:IAKPlugin |

i
l l l l

[AK:IAKEffectPlugin ‘ l AK:1AKMixe rEffectPlugin ‘ l AK:IAKSInkPlugin J l AK:lAkSourcePlugin

t

AK:18KInPlaceEffectPlugin ‘ |AK::IAkOutOfPIaceEffectPlugin]

Sound Engine plug-ins (cont.)

// MyPluginFX.h
class MyPluginFX
: public AK::IAkInPlaceEffectPlugin
{
public:
AKRESULT Init (...);
AKRESULT Term (...);
AKRESULT GetPluginInfo (...);

void Execute(AkAudioBuffer* buffer);

private:
MyPluginFXParams* params;
AK:: TAkPluginMemAlloc* allocator;
AK:: TAKEffectPluginContext* context;

b5

Sound Engine plug-ins (cont.)

// MyPluginFX.cpp
AK :: TIAKPlugin* CreateMyPluginFX (AK:: IAkPluginMemAlloc* allocator)

return AK_PLUGIN_NEW (allocator, MyPluginFX());
AK :: IAKPluginParamx CreateMyPluginFXParams(AK:: IAkPluginMemAlloc* allocator)
return AK_PLUGIN_NEW (allocator, MyPluginFXParams());
AK_IMPLEMENT_PLUGIN_FACTORY (MyPluginFX, AkPluginTypeEffect, 64, 0)

// MyPluginFXFactory.h
AK_STATIC_LINK_PLUGIN (MyPluginFX)

// MyPluginFXShared.cpp
#include "MyPluginFXFactory.h"
DEFINEDUMMYASSERTHOOK;
DEFINE_PLUGIN_REGISTER_HOOK;

Communication is key

e All the information that is required at runtime is packaged into SoundBanks,
which contain audio sources, audio object information, events, prefetch data
for streaming, and streaming references

e Audio sources are transcoded to optimized formats (Vorbis, AAC, ADPCM,
PCM) depending on which type of compression is required and are decoded
at runtime

e Data is tunneled directly to the Sound Engine when doing real-time editing
in Wwise

Memory allocation will fail

e Handling memory allocation failure in Sound Engine plug-ins is mandatory
since it cannot be assumed that memory will be readily available, especially on
game consoles

e Use the allocators provided by the Sound Engine, do not use new or C++
exceptions

e Don’t allocate more memory than you need to and be very conscious of the
footprint of your plug-in — the same mindset should be applied to the CPU
usage of your plug-in (use SIMD whenever possible)

Portability doesn’t even begin to describe it

e There are quite a lot of platforms to support depending on which version of the
Wwise SDK you want to target

e You don’t have to support all of them (some of them require a license), but
keep in mind that it may impact the popularity of your plug-in if you intend to
make it public

e Making an Authoring-only plug-in may be a good alternative since it can then
be used to like a VST to pre-render effects

B @ 3Ds P33

nnnnnnnn

SWITCH

wvos 0SS X P~Pora PSVITA

p- -3
androidty l ' XBOX 360
o

& XBOXONE &m

A pipeline for building Wwise plug-ins

e With so many target platforms, we needed to provide better development tools
to plug-in developers

e We decided to rewrite a subset of our internal build pipeline in python and give
it to plug-in developers (along with our custom build of premake and the
scripts that go with it)

e While we were at it, we also decided to write a plug-in generator to accelerate
the process of creating new plug-ins

A pipeline for building Wwise plug-ins (cont.)

Generate Package

A project base is The solutions The premade The resulting A JSON metadata
generated for a required to build a solutions are built build artifacts are file is generated
given plug-intype given platform are using the then packaged for use with the
(effet, source, sink generated using development into tar.xz Wwise Launcher
or mixer) Premake from a tools for that archives (one

PremakePlugin.lua platform archive per

file located at the platform)

root of the project

Live demo - plug-in development tools

Bridging the gap

e How can we adapt an existing JUCE plug-in to also work with Wwise?

e We mostly care about reusing the user interface code with as little
modifications as possible to make an Authoring plug-in

e Thankfully, building JUCE along with Wwise is as simple as omitting to build
the plug-in clients library code

Bridging the gap (cont.)

e The DSP code most likely won’t be reusable since not all of the Sound Engine
platforms support the C++ feature-set required to build JUCE

® You could theoretically use the same DSP code for both types of plug-in if it
was low-level enough (left as an exercise to the reader)

IAkInPlaceEffectPlugin:: AudioProcessor::
Execute(AkAudioBuffer*) processBlock(AudioBuffer<float>&)
e > processSample(float) f[~------------- |

Case study

e Voluminous, an unnecessarily large volume control plug-in made with JUCE

You’re the host (and the AudioProcessor)

e The Authoring plug-in should manage the lifetime of the AudioProcessorEditor
and should do so in the WindowProc when handling the WM_INITDIALOG and
WM_DESTROY messages

e [t should also inherit from your AudioProcessor implementation to facilitate the
creation of the AudioProcessorEditor

e One downside with this approach is that it will most likely lead to dead code
due to most of the functions of the AudioProcessor never being called

You’re the host (cont.)

// VoluminousPlugin.h
class VoluminousPlugin : public AK::Wwise ::DefaultAudioPluginImplementation,
public VoluminousAudioProcessor
{
public:
bool WindowProc (...) override;

private:
std::unique_ptr<AudioProcessorEditor> editor;

JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (VoluminousPlugin)
ks

You’re the host (cont.)

// VoluminousPlugin.cpp

bool VoluminousPlugin::WindowProc (AK::Wwise:: IAudioPlugin::eDialog dialog,
HWND nativeHandle, UINT message, WPARAM wparam,
LPARAM 1lparam, LRESULT& result)

switch (message)

{

case WM_INITDIALOG:
editor.reset (createEditorIfNeeded());
editor—setOpaque (true);
editor—setVisible (true);
editor—addToDesktop (@, nativeHandle);

break;

case WM_DESTROY:
editor—removeFromDesktop();
editorBeingDeleted (editor.get());
editor = nullptr;

break;

}

Parameter proxying

e We have two data models that we need to keep in sync
o Subclass AudioProcessorListener to listen to parameter changes in the AudioProcessor and
update the corresponding property in the PluginPropertySet
o Update the JUCE parameters when NotifyPropertyChanged is called (mostly used for undo /
redo support)

e Stack overflows due to notification ping-pongs are avoided since both Wwise
and JUCE do not send notifications when values haven’t changed

|AudioPlugin:: _
NotifyPropertyChanged Slider::setValue
Wwise Plug-in JUCE
IPluginPropertySet:: AudioProcessorListener::
SetValue audioProcessorParameterChanged

Parameter proxying (cont.)

// VoluminousPlugin.h
class VoluminousPlugin : public AK::Wwise::DefaultAudioPluginImplementation,

public VoluminousAudioProcessor

{

public:
void SetPluginPropertySet (AK::Wwise:: IPluginPropertySet* propertySet) override {
void NotifyPropertyChanged (...) override;

private:
AK::Wwise:: IPluginPropertySetx propertySet;
std::unique_ptr<AudioProcessorPropertySetProxy> proxy;

&

}

Parameter proxying (cont.)

// VoluminousPlugin.cpp

bool VoluminousPlugin::WindowProc (AK::Wwise:: IAudioPlugin::eDialog dialog,
HWND nativeHandle, UINT message, WPARAM wparam,
LPARAM lparam, LRESULT& result)

switch (message)

{
case WM_INITDIALOG:
proxy.reset(new AudioProcessorPropertySetProxy(propertySet, { editor—masterDial }));
addListener (proxy.get());
proxy—audioProcessorAttached (this);
break;
case WM_DESTROY:
removelListener (proxy.get());
proxy = nullptr;
break;

}

Graceful initialization and shutdown

e The GUI services provided by JUCE need to be properly initialized and shut
down using initialiseJuce_GUI and shutdownJuce_GUI to avoid triggering the
memory leak detectors

e Even when doing so, you may still leak messages if you don’t empty the
message queue before exiting

e None of this actually matters since the resources will be reclaimed by the
operating system immediately after

Graceful initialization and shutdown (cont.)

// Voluminous.cpp

BOOL WINAPI Dl1Main (HINSTANCE nativeHandle, DWORD reason, LPVOID reserved)
{

if (reason = DLL_PROCESS_ATTACH)

{
AK ::Wwise :: RegisterWwisePlugin();
initialiseJuce GUI();

}

return TRUE;

Graceful initialization and shutdown (cont.)

// VoluminousPlugin.cpp
static int numInstances = 0;

VoluminousPlugin::VoluminousPlugin() { ++numInstances; }
void VoluminousPlugin::Destroy()

{
delete this;
if (--numInstances = 0)
{
for (int i = 20; -1 = 0;)
MessageManager :: getInstance()—runDispatchLoopUntil (1);
shutdownJuce GUI();
}
}

Where next

e An actual JUCE client for Wwise plug-ins with limited platform support?
e VST plug-in support in Wwise for pre-rendering effects?

Q&A

contact: jrobichaud@audiokinetic.com
sample: github.com/joelrobichaud/Voluminous

mailto:jrobichaud@audiokinetic.com
https://github.com/joelrobichaud/Voluminous

